Resolução de Sistemas
A resolução de um sistema de duas equações com duas variáveis consiste em determinar um par ordenado que torne verdadeiras, ao mesmo tempo, essas equações.
Estudaremos a seguir alguns métodos:
Método de substituição
Solução
determinamos o valor de x na 1ª equação.
x = 4 - y
Substituímos esse valor na 2ª equação.
2 . (4 - y) -3y = 3
Resolvemos a equação formada.
8 - 2y -3y = 3
8 - 2y -3y = 3
-5y = -5 => Multiplicamos por -1
5y = 5
y = 1
Substituímos o valor encontrado de y, em qualquer das equações, determinando x.
x + 1 = 4
x = 4 - 1
x = 3
A solução do sistema é o par ordenado (3, 1).
V = {(3, 1)}
Método da adição
Sendo U = , observe a solução de cada um dos sistemas a seguir, pelo método da adição.
Resolva o sistema abaixo:
Solução
Adicionamos membros a membros as equações:
2x = 16
x = 8
Substituímos o valor encontrado de x, em qualquer das equações, determinado y:
8 + y = 10
y = 10 - 8
y = 2
A solução do sistema é o par ordenado (8, 2)
V = {(8, 2)}
Nenhum comentário:
Postar um comentário